\& Management Technology

EXISTENCE OF NONOSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DYNAMIC EQUATIONS ON TIME SCALES

A.GEORGE MARIA SELVAM
Sacred Heart College
Tirupattur

M.PAUL LOGANATHAN
Dravidian University
Kuppam, S.India

S.JANCI RANI
Sacred Heart College
Tirupattur

Abstract

: In this paper, we study the existence of nonoscillatory solution of first-order neutral dynamic equations with delay and advance terms on Time Scales. Some sufficient conditions for the existence of positive solutions are obtained. We use the Banach contraction principle to prove our results.

KEYWORDS:

Dynamic equations, nonoscillation, positive solution, Banach contraction principle.

I. INTRODUCTION

In this paper we consider a first-order neutral dynamic equation

$$
\begin{equation*}
\left[x(n)+P_{1}(n) x\left(n-\tau_{1}\right)+P_{2}(n) x\left(n+\tau_{2}\right)\right]^{\Delta}+Q_{1}(n) x\left(n-\sigma_{1}\right)+Q_{2}(n) x\left(n+\sigma_{2}\right)=0 \tag{1.1}
\end{equation*}
$$

where $P_{1}, P_{2} \in C\left(\left[t_{0}, \infty\right), R\right), Q_{1}, Q_{2} \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right), \tau_{1}, \tau_{2}>0$, and $\sigma_{1}, \sigma_{2} \geq 0$.
Let $m=\max \left\{\tau_{1}, \sigma_{1}\right\}$. We give some new criteria for the existence of non-oscillatory solutions of (1.1). Recently, the existence of non-oscillatory solutions of neutral differential equations and difference equations have been investigated by many authors see books [1,2,9,11] and papers [5,6,8,10,12,13] and the references contained therein.

The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his Ph.D. Thesis [7] in order to unify continuous and discrete analysis. A time scale \mathbb{T} is an arbitrary nonempty closed subset of the reals, and scale is equal to the reals or to the integers represent the classical theories of differential and of difference equations. Many other interesting time scales exist, and they give rise to plenty of applications, among them the study of population dynamic models (see [3]). A book on the subject of time scales by Bohner and Peterson [3,4] summarizes and organizes much of the time scale calculus. A solution of the dynamic equation (1.1) is called eventually positive if there exists a positive integer n_{0} such that $x(n)>0$ for $n \in N\left(n_{0}\right)$.If there exists a positive integer n_{0} such that $x(n)<0$ for $n \in N\left(n_{0}\right)$, then (1.1) is called eventually negative.

The solution of the dynamic equation (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative. Otherwise, it is called nonoscillatory. We need the following important theorem to prove out main results.
Theorem 1.1 (Banach's Contraction Mapping Principle). A contraction mapping on a complete metric space has exactly one fixed point.

II. MAIN RESULTS

To show that an operator S satisfies the conditions for the contraction mapping principle, we consider different cases for the ranges of the coefficients $P_{1}(t)$ and $P_{2}(t)$.

THEOREM 2.1 Assume that $0 \leq P_{1}(n) \leq p_{1}<1,0 \leq P_{2}(n)<p_{2}<1-p_{1}$ and
$\int_{t_{0}}^{\infty} Q_{1}(s) \Delta s<\infty, \int_{t_{0}}^{\infty} Q_{2}(s) \Delta s<\infty$
Then (1.1) has a bounded non-oscillatory solution.
Proof: Because of (2.1) we can choose $n_{1} \geq n_{0}$,
$n_{1} \geq n_{0}+\max \left\{\tau_{1}+\sigma_{1}\right\}$
Sufficiently large such that

$$
\begin{equation*}
\int_{t}^{\infty} Q_{1}(s) \Delta s \leq \frac{M_{2}-\alpha}{M_{2}}, n \geq n_{1}, \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\int_{t}^{\infty} Q_{2}(s) \Delta s \leq \frac{\alpha-\left(p_{1}+p_{2}\right) M_{2}-M_{1}}{M_{2}}, n \geq n_{1} \tag{2.4}
\end{equation*}
$$

where M_{1} and M_{2} are positive constants such that
$\left(p_{1}+p_{2}\right) M_{2}+M_{1}<M_{2}$ and $\alpha \in\left(\left(p_{1}+p_{2}\right) M_{2}+M_{1}, M_{2}\right)$.
Let $l_{n_{0}}^{\infty}$ be the set of all real sequence with the norm $\|x\|=\sup |x(n)|<\infty$. Then $l_{n_{0}}^{\infty}$ is a Banach space. We define a closed, bounded and convex subset Ω of $l_{n_{0}}^{\infty}$ as follows
$\Omega=\left\{x \in l_{n_{0}}^{\infty}: M_{1} \leq x(n) \leq M_{2}, n \geq n_{0}\right\}$.
Define a mapping $S: \Omega \rightarrow l_{n_{0}}^{\infty}$ as follows
$(S x)(n)=\left\{\begin{array}{l}\alpha-P_{1}(n) x\left(n-\tau_{1}\right)-P_{2}(n) x\left(n+\tau_{2}\right) \\ +\int_{t}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right] \Delta s, n \geq n_{1}, \\ (S x)\left(n_{1}\right), n_{0} \leq n \leq n_{1}\end{array}\right.$
Obviously $S x$ is continuous. For $n \geq n_{1^{\prime}}$ and $x \in \Omega$, from (2.3) and (2.4), respectively, it follows that

$$
\begin{aligned}
(S x)(n) & \leq \alpha+\int_{t}^{\infty} Q_{1}(s) x\left(s-\sigma_{1}\right) \Delta s \\
& =\alpha+M_{2} \int_{t}^{\infty} Q_{1}(s) \Delta s \\
& =\alpha+M_{2}\left(\frac{M_{2}-\alpha}{M_{2}}\right)
\end{aligned}
$$

$\therefore(S x)(n) \leq M_{2}$.
Furthermore we have
$(S x)(n) \geq \alpha-P_{1}(n) x\left(n-\tau_{1}\right)-P_{2}(n) x\left(n+\tau_{2}\right)-\int_{t}^{\infty} Q_{2}(s) x\left(s+\sigma_{2}\right) \Delta s$

$$
\begin{aligned}
& \geq \alpha-p_{1} M_{2}-p_{2} M_{2}-M_{2} \int_{t}^{\infty} Q_{2}(s) \Delta s \\
& =\alpha-p_{1} M_{2}-p_{2} M_{2}-M_{2}\left(\frac{\alpha-\left(p_{1}+p_{2}\right) M_{2}-M_{1}}{M_{2}}\right)
\end{aligned}
$$

$\therefore(S x)(n) \geq M_{1}$
Hence
$M_{1} \leq(S x)(n) \leq M_{2}$ for $n \geq n_{1}$
Thus we have proved that $(S x)(n) \in \Omega$ for any $x \in \Omega$.
This mean that $S \Omega \subset \Omega$. To apply the contraction mapping principle, the remaining is to show that S is a contraction mapping on Ω. Thus $x_{1}, x_{2} \in \Omega$ and $n \leq n_{1}$,

$$
\begin{aligned}
& \left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \\
& =\mid \alpha-P_{1}(n) x_{1}\left(n-\tau_{1}\right)-P_{2}(n) x_{1}\left(n+\tau_{2}\right)+\int_{t}^{\infty}\left[Q_{1}(s) x_{1}\left(s-\sigma_{1}\right)-Q_{2}(s) x_{1}\left(s+\sigma_{2}\right)\right] \Delta s \\
& -\left(\alpha-P_{1}(n) x_{2}\left(n-\tau_{1}\right)-P_{2}(n) x_{2}\left(n+\tau_{2}\right)+\int_{t}^{\infty}\left[Q_{1}(s) x_{2}\left(s-\sigma_{1}\right)-Q_{2}(s) x_{2}\left(s+\sigma_{2}\right)\right] \Delta s\right) \mid \\
& \leq P_{1}(n)\left|x_{1}\left(n-\tau_{1}\right)-x_{2}\left(n-\tau_{1}\right)\right|+P_{2}(n)\left|x_{1}\left(n+\tau_{2}\right)-x_{2}\left(n+\tau_{2}\right)\right| \\
& +\int_{t}^{\infty} Q_{1}(s)\left|x_{1}\left(s-\sigma_{1}\right)-x_{2}\left(s-\sigma_{1}\right)\right| \Delta s+\int_{t}^{\infty} Q_{2}(s)\left|x_{1}\left(s+\sigma_{1}\right)-x_{2}\left(s+\sigma_{2}\right)\right| \Delta s \\
& \leq p_{1}\left\|x_{1}-x_{2}\right\|+p_{2}\left\|x_{1}-x_{2}\right\|+\int_{t}^{\infty} Q_{1}(s)\left\|x_{1}-x_{2}\right\| \Delta s+\int_{t}^{\infty} Q_{2}(s)\left\|x_{1}-x_{2}\right\| \Delta s \\
& =\left(p_{1}+p_{2}+\int_{t}^{\infty} Q_{1}(s) \Delta s+\int_{t}^{\infty} Q_{2}(s) \Delta s\right)\left\|x_{1}-x_{2}\right\| \\
& =\left(p_{1}+p_{2}+\frac{M_{2}-\alpha}{M_{2}}+\frac{\alpha-\left(p_{1}+p_{2}\right) M_{2}-M_{1}}{M_{2}}\right)\left\|x_{1}-x_{2}\right\| \\
& =\frac{M_{2}-M_{1}}{M_{2}}\left(\left\|x_{1}-x_{2}\right\|\right) \\
&
\end{aligned}
$$

$=\lambda_{1}\left\|x_{1}-x_{2}\right\|$
Where $\lambda_{1}=1-\frac{M_{1}}{M_{2}}$. This implies that
$\left\|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right\| \leq \lambda_{1}\left\|x_{1}-x_{2}\right\|$
Thus we have to proved that S is a contraction mapping on Ω. In fact $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$ we have $\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \leq p(n)\left|x_{1}\left(n-\tau_{1}\right)-x_{2}\left(n-\tau_{1}\right)\right| \leq \lambda_{1}\left\|x_{1}-x_{2}\right\|$

Since $0<\lambda_{1}<1$. We conclude that S is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

THEOREM 2.2. Assume that $0 \leq P_{1}(n) \leq p_{1}<1, p_{1}-1<p_{2} \leq P_{2}(n) \leq 0$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof: Because of (2.1), we can choose $n_{1} \geq n_{0}$ sufficiently large satisfying (2.2) such that

$$
\begin{align*}
& \int_{t}^{\infty} Q_{1}(s) \Delta s \leq \frac{\left(1+p_{2}\right) N_{2}-\alpha}{N_{2}}, n \geq n_{1} \tag{2.5}\\
& \int_{t}^{\infty} Q_{2}(s) \Delta s \leq \frac{\alpha-p_{1} N_{2}-N_{1}}{N_{2}}, n \geq n_{1} \tag{2.6}
\end{align*}
$$

Where N_{1} and N_{2} are positive constants such that

$$
N_{1}+p_{1} N_{2}<\left(1+p_{2}\right) N_{2} \text { and } \alpha \in\left(N_{1}+p_{1} N_{2},\left(1+p_{2}\right) N_{2}\right) .
$$

Let $l_{n_{0}}^{\infty}$ be the set of all real sequence with the norm $\|x\|=\sup |x(n)|<\infty$. Then $l_{n_{0}}^{\infty}$ is a Banach space. We define a closed, bounded and convex subset Ω of $l_{n_{0}}^{\infty}$ as follows

$$
\Omega=\left\{x \in l_{n_{0}}^{\infty}: N_{1} \leq x(n) \leq N_{2}, n \geq n_{0}\right\} .
$$

Define a mapping $S: \Omega \rightarrow l_{n_{0}}^{\infty}$ as follows

$$
(S x)(n)=\left\{\begin{array}{l}
\alpha-P_{1}(n) x\left(n-\tau_{1}\right)-P_{2}(n) x\left(n+\tau_{2}\right) \\
+\int_{t}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right] \Delta s, n \geq n_{1}, \\
(S x)\left(n_{1}\right), n_{0} \leq n \leq n_{1} .
\end{array}\right.
$$

Obviously $S x$ is continuous. For $n \geq n_{1^{\prime}}$ and $x \in \Omega$, from (2.5) and (2.6), respectively, it follows that
$(S x)(n) \leq \alpha-P_{2}(n) x\left(n+\tau_{2}\right)+\int_{t}^{\infty} Q_{1}(s) x\left(s-\sigma_{1}\right) \Delta s$

$$
\begin{aligned}
& \leq \alpha-p_{2} N_{2}+N_{2} \int_{t}^{\infty} Q_{1}(s) \Delta s \\
& =\alpha-p_{2} N_{2}+N_{2}\left(\frac{\left(1+p_{2}\right) N_{2}-\alpha}{N_{2}}\right)
\end{aligned}
$$

$\therefore(S x)(n) \leq N_{2}$
Furthermore we have

$$
\begin{aligned}
&(S x)(n) \geq \alpha-P_{1}(n) x\left(n-\tau_{1}\right)-\int_{t}^{\infty} Q_{2}(s) x\left(s+\sigma_{2}\right) \Delta s \\
& \geq \alpha-p_{1} N_{2}-N_{2} \int_{t}^{\infty} Q_{2}(s) \Delta s \\
&=\alpha-p_{1} N_{2}-N_{2}\left(\frac{\alpha-p_{1} N_{2}-N_{1}}{N_{2}}\right) \\
& \therefore(S x)(n) \geq N_{1}
\end{aligned}
$$

Hence
$N_{1} \leq(S x)(n) \leq N_{2}$ for $n \geq n_{1}$
Thus we have proved that $(S x)(n) \in \Omega$ for any $x \in \Omega$.
This mean that $S \Omega \subset \Omega$. To apply the contraction mapping principle, the remaining is to show that S is a contraction mapping on Ω. Thus $x_{1}, x_{2} \in \Omega$ and $n \leq n_{1}$,

$$
\begin{aligned}
& \left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \\
& =\mid \alpha-P_{1}(n) x_{1}\left(n-\tau_{1}\right)-P_{2}(n) x_{1}\left(n+\tau_{2}\right)+\int_{t}^{\infty}\left[Q_{1}(s) x_{1}\left(s-\sigma_{1}\right)-Q_{2}(s) x_{1}\left(s+\sigma_{2}\right)\right] \Delta s \\
& -\left(\alpha-P_{1}(n) x_{2}\left(n-\tau_{1}\right)-P_{2}(n) x_{2}\left(n+\tau_{2}\right)+\int_{t}^{\infty}\left[Q_{1}(s) x_{2}\left(s-\sigma_{1}\right)-Q_{2}(s) x_{2}\left(s+\sigma_{2}\right)\right] \Delta s\right) \mid \\
& \leq P_{1}(n)\left|x_{1}\left(n-\tau_{1}\right)-x_{2}\left(n-\tau_{1}\right)\right|+P_{2}(n)\left|x_{1}\left(n+\tau_{2}\right)-x_{2}\left(n+\tau_{2}\right)\right| \\
& +\int_{t}^{\infty} Q_{1}(s)\left|x_{1}\left(s-\sigma_{1}\right)-x_{2}\left(s-\sigma_{1}\right)\right| \Delta s+\int_{t}^{\infty} Q_{2}(s)\left|x_{1}\left(s+\sigma_{2}\right)-x_{2}\left(s+\sigma_{2}\right)\right| \Delta s \\
& \leq p_{1}\left\|x_{1}-x_{2}\right\|-p_{2}\left\|x_{1}-x_{2}\right\|+\int_{t}^{\infty} Q_{1}(s)\left\|x_{1}-x_{2}\right\| \Delta s+\int_{t}^{\infty} Q_{2}(s)\left\|x_{1}-x_{2}\right\| \Delta s \\
& =\left(p_{1}-p_{2}+\int_{t}^{\infty} Q_{1}(s) \Delta s+\int_{t}^{\infty} Q_{2}(s) \Delta s\right)\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

$=\left(p_{1}-p_{2}+\frac{\left(1+p_{2}\right) N_{2}-\alpha}{N_{2}}+\frac{\alpha-p_{1} N_{2}-N_{1}}{N_{2}}\right)\left\|x_{1}-x_{2}\right\|$
$=\frac{N_{2}-N_{1}}{N_{2}}\left(\left\|x_{1}-x_{2}\right\|\right)$
$=\lambda_{2}\left\|x_{1}-x_{2}\right\|$
Where $\lambda_{2}=1-\frac{N_{1}}{N_{2}}$. This implies that

$$
\left\|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right\| \leq \lambda_{2}\left\|x_{1}-x_{2}\right\|
$$

Thus we have to proved that S is a contraction mapping on Ω. In fact $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$ we have $\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \leq p(n)\left|x_{1}\left(n-\tau_{1}\right)-x_{2}\left(n-\tau_{1}\right)\right| \leq \lambda_{2}\left\|x_{1}-x_{2}\right\|$

Since $0<\lambda_{2}<1$. We conclude that S is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

Theorem 2.3. Assume that $1<p_{1} \leq P_{1}(n)<p_{1_{0}}<\infty, 0 \leq P_{2}(n) \leq p_{2}<p_{1}-1$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof: In view of (2.1), we can choose $n_{1} \geq n_{0}$
$n_{1}+\tau_{1} \geq n_{0}+\sigma_{1}$,
Sufficiently large such that

$$
\begin{align*}
& \int_{t}^{\infty} Q_{1}(s) \Delta s \leq \frac{p_{1} M_{4}-\alpha}{M_{4}}, n \geq n_{1}, \tag{2.8}\\
& \int_{t}^{\infty} Q_{2}(s) \Delta s \leq \frac{\alpha-p_{1_{0}} M_{3}-\left(1+p_{2}\right) M_{4}}{M_{4}}, n \geq n_{1} \tag{2.9}
\end{align*}
$$

Where M_{3} and M_{4} are positive constants such that

$$
p_{1_{0}} M_{3}+\left(1+p_{2}\right) M_{4}<p_{1} M_{4} \text { and } \alpha \in\left(p_{1_{0}} M_{3}+\left(1+p_{2}\right) M_{4}, p_{1} M_{4}\right) .
$$

Let $l_{n_{0}}^{\infty}$ be the set of all real sequence with the norm $\|x\|=\sup |x(n)|<\infty$. Then $l_{n_{0}}^{\infty}$ is a Banach space. We define a closed, bounded and convex subset Ω of $l_{n_{0}}^{\infty}$ as follows
$\Omega=\left\{x \in l_{n_{0}}^{\infty}: M_{3} \leq x(n) \leq M_{4}, n \geq n_{0}\right\}$.
Define a mapping $S: \Omega \rightarrow l_{n_{0}}^{\infty}$ as follows

$$
(S x)(n)=\left\{\begin{array}{l}
\frac{1}{P_{1}\left(n+\tau_{1}\right)}\left\{\alpha-x\left(n+\tau_{1}\right)-P_{2}\left(n+\tau_{1}\right) x\left(n+\tau_{1}+\tau_{2}\right)\right. \\
\left.+\int_{t+\tau_{1}}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right] \Delta s\right\}, n \geq n_{1} \\
(S x)\left(n_{1}\right), n_{0} \leq n \leq n_{1} .
\end{array}\right.
$$

Clearly $S x$ is continuous. For $n \geq n_{1}$, and $x \in \Omega$, from (2.8) and (2.9), respectively, it follows that

$$
\begin{aligned}
(S x)(n) & \leq \frac{1}{P_{1}\left(n+\tau_{1}\right)}\left(\alpha+\int_{t+\tau_{1}}^{\infty} Q_{1}(s) x\left(s-\sigma_{1}\right) \Delta s\right) \\
& \leq \frac{1}{p_{1}}\left(\alpha+M_{4} \int_{t}^{\infty} Q_{1}(s) \Delta s\right) \\
& =\frac{1}{p_{1}}\left(\alpha+M_{4}\left(\frac{p_{1} M_{4}-\alpha}{M_{4}}\right)\right) \\
\therefore(S x)(n) & \leq M_{4}
\end{aligned}
$$

Furthermore we have

$$
\begin{aligned}
(S x)(n) & \geq \frac{1}{P_{1}\left(n+\tau_{1}\right)}\left(\alpha-x\left(n+\tau_{1}\right)-P_{2}\left(n+\tau_{1}\right) x\left(n+\tau_{1}+\tau_{2}\right)-\int_{t+\tau_{1}}^{\infty} Q_{2}(s) x\left(s+\sigma_{2}\right) \Delta s\right) \\
& \geq \frac{1}{P_{1}\left(n+\tau_{1}\right)}\left(\alpha-M_{4}-p_{2} M_{4}-M_{4} \int_{t}^{\infty} Q_{2}(s) \Delta s\right) \\
& \geq \frac{1}{p_{1_{0}}}\left(\alpha-\left(1+p_{2}\right) M_{4}-M_{4} \int_{t}^{\infty} Q_{2}(s) \Delta s\right) \\
& =\frac{1}{p_{1_{0}}}\left(\alpha-\left(1+p_{2}\right) M_{4}-M_{4}\left(\frac{\alpha-p_{1_{0}} M_{3-}\left(1+p_{2}\right) M_{4}}{M_{4}}\right)\right)
\end{aligned}
$$

$(S x)(n) \geq M_{3}$
Hence
$M_{3} \leq(S x)(n) \leq M_{4}$ for $n \geq n_{1}$
This we have proved that $(S x)(n) \in \Omega$ for any $x \in \Omega$.
This mean that $S \Omega \subset \Omega$. To apply the contraction mapping principle, the remaining is to show that S is a contraction mapping on Ω. Thus $x_{1}, x_{2} \in \Omega$ and $n \leq n_{1}$,

$$
\begin{aligned}
& \left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \\
& =\left\lvert\, \frac{1}{P_{1}\left(n+\tau_{1}\right)}\left\{\alpha-x_{1}\left(n+\tau_{1}\right)-P_{2}\left(n+\tau_{1}\right) x_{1}\left(n+\tau_{1}+\tau_{2}\right)+\int_{t+\tau_{1}}^{\infty}\left[Q_{1}(s) x_{1}\left(s-\sigma_{1}\right)-Q_{2}(s) x_{1}\left(s+\sigma_{2}\right)\right] \Delta s\right\}\right. \\
& \left.-\left(\frac{1}{P_{1}\left(n+\tau_{1}\right)}\left\{\alpha-x_{2}\left(n+\tau_{1}\right)-P_{2}\left(n+\tau_{1}\right) x_{2}\left(n+\tau_{1}+\tau_{2}\right)+\int_{t+\tau_{1}}^{\infty}\left[Q_{1}(s) x_{2}\left(s-\sigma_{1}\right)-Q_{2}(s) x_{2}\left(s+\sigma_{2}\right)\right] \Delta s\right\}\right) \right\rvert\, \\
& \leq \frac{1}{P_{1}\left(n+\tau_{1}\right)}\left(\left|x_{1}\left(n+\tau_{1}\right)-x_{2}\left(n+\tau_{1}\right)\right|+P_{2}\left(n+\tau_{1}\right)\left|x_{1}\left(n+\tau_{1}+\tau_{2}\right)-x_{2}\left(n+\tau_{1}+\tau_{2}\right)\right|\right. \\
& \left.+\int_{t+\tau_{1}}^{\infty} Q_{1}(s)\left|x_{1}\left(s-\sigma_{1}\right)-x_{2}\left(s-\sigma_{1}\right)\right| \Delta s+\int_{t+\tau_{1}}^{\infty} Q_{2}(s)\left|x_{1}\left(s+\sigma_{2}\right)-x_{2}\left(s+\sigma_{2}\right)\right| \Delta s\right) \\
& \leq \frac{1}{p_{1}}\left(\left\|x_{1}-x_{2}\right\|+p_{2}\left\|x_{1}-x_{2}\right\|+\int_{t}^{\infty} Q_{1}(s)\left\|x_{1}-x_{2}\right\| \Delta s+\int_{t}^{\infty} Q_{2}(s)\left\|x_{1}-x_{2}\right\| \Delta s\right) \\
& =\frac{1}{p_{1}}\left(1+p_{2}+\int_{t}^{\infty} Q_{1}(s) \Delta s+\int_{t}^{\infty} Q_{2}(s) \Delta s\right)\left\|x_{1}-x_{2}\right\| \\
& =\frac{1}{p_{1}}\left(1+p_{2}+\frac{p_{1} M_{4}-\alpha}{M_{4}}+\frac{\alpha-p_{1_{0}} M_{3}-\left(1+p_{2}\right) M_{4}}{M_{4}}\right)\left\|x_{1}-x_{2}\right\| \\
& =\frac{1}{p_{1}}\left(\frac{p_{1} M_{4}-p_{1_{0}} M_{3}}{M_{4}}\right)\left\|x_{1}-x_{2}\right\| \\
& =\lambda_{3}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

Where $\lambda_{3}=1-\frac{p_{1_{0}} M_{3}}{p_{1} M_{4}}$ This implies that

$$
\left\|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right\| \leq \lambda_{3}\left\|x_{1}-x_{2}\right\|
$$

Thus we have to proved that S is a contraction mapping on Ω. In fact $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$ we have

$$
\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \leq p(n)\left|x_{1}\left(n-\tau_{1}\right)-x_{2}\left(n-\tau_{1}\right)\right| \leq \lambda_{3}\left\|x_{1}-x_{2}\right\|
$$

Since $0<\lambda_{3}<1$. We conclude that S is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

THEOREM 2.4. Assume that $1<p_{1} \leq P_{1}(n)<p_{1_{0}}<\infty, 1-p_{1}<p_{2} \leq P_{2}(n) \leq 0$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.

Proof: In view of (2.1), we can choose $n_{1} \geq n_{0}$ sufficiently large satisfying (2.7) such that
$\int_{t}^{\infty} Q_{1}(s) \Delta s \leq \frac{\left(p_{1}+p_{2}\right) N_{4}-\alpha}{N_{4}}, n \geq n_{1}$,

$$
\begin{equation*}
\int_{t}^{\infty} Q_{2}(s) \Delta s \leq \frac{\alpha-p_{1_{0}} N_{3}-N_{4}}{N_{4}}, n \geq n_{1} \tag{2.11}
\end{equation*}
$$

Where N_{3} and N_{4} are positive constants such that

$$
p_{1_{0}} N_{3}+N_{4}<\left(p_{1}+p_{2}\right) N_{4} \text { and } \alpha \in\left(p_{1_{0}} N_{3}+N_{4},\left(p_{1}+p_{2}\right) N_{4}\right) .
$$

Let $l_{n_{0}}^{\infty}$ be the set of all real sequence with the norm $\|x\|=\sup |x(n)|<\infty$. Then $l_{n_{0}}^{\infty}$ is a Banach space. We define a closed, bounded and convex subset Ω of $l_{n_{0}}^{\infty}$ as follows

$$
\Omega=\left\{x \in l_{n_{0}}^{\infty}: N_{3} \leq x(n) \leq N_{4}, n \geq n_{0}\right\} .
$$

Define a mapping $S: \Omega \rightarrow l_{n_{0}}^{\infty}$ as follows

$$
(S x)(n)=\left\{\begin{array}{l}
\frac{1}{P_{1}\left(n+\tau_{1}\right)}\left\{\alpha-x\left(n+\tau_{1}\right)-P_{2}\left(n+\tau_{1}\right) x\left(n+\tau_{1}+\tau_{2}\right)\right. \\
\left.+\int_{t+\tau_{1}}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right] \Delta s\right\}, n \geq n_{1}, \\
(S x)\left(n_{1}\right), n_{0} \leq n \leq n_{1} .
\end{array}\right.
$$

Clearly $S x$ is continuous. For $n \geq n_{1^{\prime}}$ and $x \in \Omega$, from (2.10) and (2.11), respectively, it follows that

$$
\begin{aligned}
(S x)(n) & \leq \frac{1}{P_{1}\left(n+\tau_{1}\right)}\left(\alpha-P_{2}\left(n+\tau_{1}\right) x\left(n+\tau_{1}+\tau_{2}\right)+\int_{t+\tau_{1}}^{\infty} Q_{1}(s) x\left(s-\sigma_{1}\right) \Delta s\right) \\
& \leq \frac{1}{p_{1}}\left(\alpha-p_{2} N_{4}+N_{4} \int_{t}^{\infty} Q_{1}(s) \Delta s\right) \\
& =\frac{1}{p_{1}}\left(\alpha-p_{2} N_{4}+N_{4}\left(\frac{\left(p_{1}+p_{2}\right) N_{4}-\alpha}{N_{4}}\right)\right) \\
\therefore(S x)(n) & \leq N_{4}
\end{aligned}
$$

Furthermore we have

$$
\begin{aligned}
(S x)(n) & \geq \frac{1}{P_{1}\left(n+\tau_{1}\right)}\left(\alpha-x\left(n+\tau_{1}\right)-\int_{t+\tau_{1}}^{\infty} Q_{2}(s) x\left(s+\sigma_{2}\right) \Delta s\right) \\
& \geq \frac{1}{p_{1_{0}}}\left(\alpha-N_{4}-N_{4} \int_{t}^{\infty} Q_{2}(s) \Delta s\right)
\end{aligned}
$$

$$
=\frac{1}{p_{1_{0}}}\left(\alpha-N_{4}-N_{4}\left(\frac{\alpha-p_{1_{0}} N_{3}-N_{4}}{N_{4}}\right)\right)
$$

$\therefore(S x)(n) \geq N_{3}$
Hence

$$
N_{3} \leq(S x)(n) \leq N_{4} \text { for } n \geq n_{1}
$$

This we have proved that $(S x)(n) \in \Omega$ for any $x \in \Omega$.
This mean that $S \Omega \subset \Omega$. To apply the contraction mapping principle, the remaining is to show that S is a contraction mapping on Ω. Thus $x_{1}, x_{2} \in \Omega$ and $n \leq n_{1}$,

$$
\begin{aligned}
& \left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \\
& =\left\lvert\, \frac{1}{P_{1}\left(n+\tau_{1}\right)}\left\{\alpha-x_{1}\left(n+\tau_{1}\right)-P_{2}\left(n+\tau_{1}\right) x_{1}\left(n+\tau_{1}+\tau_{2}\right)+\int_{t+\tau_{1}}^{\infty}\left[Q_{1}(s) x_{1}\left(s-\sigma_{1}\right)-Q_{2}(s) x_{1}\left(s+\sigma_{2}\right)\right] \Delta s\right\}\right. \\
& \left.-\left(\frac{1}{P_{1}\left(n+\tau_{1}\right)}\left\{\alpha-x_{2}\left(n+\tau_{1}\right)-P_{2}\left(n+\tau_{1}\right) x_{2}\left(n+\tau_{1}+\tau_{2}\right)+\int_{t+\tau_{1}}^{\infty}\left[Q_{1}(s) x_{2}\left(s-\sigma_{1}\right)-Q_{2}(s) x_{2}\left(s+\sigma_{2}\right)\right] \Delta s\right\}\right) \right\rvert\, \\
& \leq \frac{1}{P_{1}\left(n+\tau_{1}\right)}\left(\left|x_{1}\left(n+\tau_{1}\right)-x_{2}\left(n+\tau_{1}\right)\right|+P_{2}\left(n+\tau_{1}\right)\left|x_{1}\left(n+\tau_{1}+\tau_{2}\right)-x_{2}\left(n+\tau_{1}+\tau_{2}\right)\right|\right. \\
& \left.+\int_{t+\tau_{1}}^{\infty} Q_{1}(s)\left|x_{1}\left(s-\sigma_{1}\right)-x_{2}\left(s-\sigma_{1}\right)\right| \Delta s+\int_{t+\tau_{1}}^{\infty} Q_{2}(s)\left|x_{1}\left(s+\sigma_{2}\right)-x_{2}\left(s+\sigma_{2}\right)\right| \Delta s\right) \\
& \leq \frac{1}{p_{1}}\left(\left\|x_{1}-x_{2}\right\|-p_{2}\left\|x_{1}-x_{2}\right\|+\int_{t}^{\infty} Q_{1}(s)\left\|x_{1}-x_{2}\right\| \Delta s+\int_{t}^{\infty} Q_{2}(s)\left\|x_{1}-x_{2}\right\| \Delta s\right) \\
& =\frac{1}{p_{1}}\left(1-p_{2}+\int_{t}^{\infty} Q_{1}(s) \Delta s+\int_{t}^{\infty} Q_{2}(s) \Delta s\right)\left\|x_{1}-x_{2}\right\| \\
& =\frac{1}{p_{1}}\left(1-p_{2}+\frac{\left(p_{1}+p_{2}\right) N_{4}-\alpha}{N_{4}}+\frac{\left.\alpha-p_{1_{0}} N_{3}-N_{4}\right)\left\|x_{1}-x_{2}\right\|}{N_{4}}\right. \\
& =\frac{1}{p_{1}}\left(\frac{p_{1} N_{4}-p_{1_{0}} N_{3}}{N_{4}}\right)\left\|x_{1}-x_{2}\right\| \\
& =\lambda_{4}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\lambda_{4}=1-\frac{p_{1_{0}} N_{3}}{p_{1} N_{4}}$. This implies that $\left\|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right\| \leq \lambda_{4}\left\|x_{1}-x_{2}\right\|$

Thus we have to proved that S is a contraction mapping on Ω. In fact $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$ we have
$\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \leq p(n)\left|x_{1}\left(n-\tau_{1}\right)-x_{2}\left(n-\tau_{1}\right)\right| \leq \lambda_{4}\left\|x_{1}-x_{2}\right\|$
Since $0<\lambda_{4}<1$. We conclude that S is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

References

1. R.P. Agarwal, M. Bohner, S.R. Grace, D.ORegan, Discrete Oscillation Theory, Hindawi Publishing Corporation, 2005.
2. R.P. Agarwal, M. Bohner, S.R. Grace, D.O’Regan; Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic, (2000).
3. M.Bohner and A.Peterson, Dynamic Equations on time Scales: An introduction with Applications, Birkhuser, Boston, 2001.
4. M.Bohner and A.Peterson, Advances in Dynamic Equations on Time Scales, Birkhuser, Boston, 2003.
5. T.Candan, Existence of non-oscillatory solutions of first order nonlinear neutral differential equations, Appl. Math. Lett., 26(2013),1182-1186.
6. Tuncay Candan, Existence of non-oscillatory solutions to first-order neutral differential equations, Electron. J.Diff.Equ., Vol.2016(2016),No.39,pp.1-11.
7. S.Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math.,18:1856,1990.
8. Sharma m.K.,Bansal K.K.: A Comparative Study of Reliability Analysis of a Non-Series Parallel Network, International Journal of Education and Science Research Review (2015) pp 13-21
9. M.K.Sharma, K.K.Bansal, "Fuzzy Analysis Of Shortest Job First" International Journal of Engineering Research \& Management Technology, May-2015 Vol-2 Issue-3
10. C.Jinfa, Existence of a non-oscillatory solution of a second-order linear neutral difference equation, Appl. Math. Lett. 20(2007), pp.892-899.
11. J.Hale, Theory of Functional Differential equations, Vol. 3, Applied Mathematical Sciences, Springer, $2^{\text {nd }}$ edition, 1977.
12. M.R.S. Kulenovic and S.Hadziomerspahic, Existence of non-oscillatory solution of second order linear neutral delay equation, Journal of Mathematical Analysis and Applications, Vol.228, no.2,436-448,1998.
13. S.H. Saker, Oscillation theory of delay differential and difference equations second and third orders, Lambert Academic Publishing (2010).
14. Y.H. Yu, H.Z. Wang, Non-oscillatory solutions of second-order nonlinear neutral delay equations, J.Math. Anal.Appl.311(2005),445-456.
15. Yong Zhou, Existence for non-oscillatory solutions of second order nonlinear differential equations, J.Math. Anal. Appl.331(2007),91-96.
